Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2179: 303-314, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32939729

RESUMO

An epithelial-mesenchymal transition (EMT) occurs in almost every metazoan embryo at the time mesoderm begins to differentiate. Several embryos have a long record as models for studying an EMT given that a known population of cells enters the EMT at a known time thereby enabling a detailed study of the process. Often, however, it is difficult to learn the molecular details of these model EMT systems because the transitioning cells are a minority of the population of cells in the embryo and in most cases there is an inability to isolate that population. Here we provide a method that enables an examination of genes expressed before, during, and after the EMT with a focus on just the cells that undergo the transition. Single cell RNA-seq (scRNA-seq) has advanced as a technology making it feasible to study the trajectory of gene expression specifically in the cells of interest, in vivo, and without the background noise of other cell populations. The sea urchin skeletogenic cells constitute only 5% of the total number of cells in the embryo yet with scRNA-seq it is possible to study the genes expressed by these cells without background noise. This approach, though not perfect, adds a new tool for uncovering the mechanism of EMT in this cell type.


Assuntos
Biologia Computacional/métodos , Transição Epitelial-Mesenquimal , RNA-Seq/métodos , Análise de Célula Única/métodos , Animais , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Ouriços-do-Mar
2.
Aging Cell ; 6(6): 775-82, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17925006

RESUMO

It has been proposed that cumulative somatic mutations contribute to the aging process by disrupting the transcriptional networks that regulate cell structure and function. Experimental support for this model emerged from a recent study of cardiomyocytes that showed a dramatic increase in the transcriptional heterogeneity of these long-lived postmitotic cells with age. To determine if regulatory instability is a hallmark of aging in renewing tissues, we evaluated gene expression noise in four hematopoietic cell types: stem cells, granulocytes, naïve B cells and naïve T cells. We used flow cytometry to purify phenotypically equivalent cells from young and old mice, and applied multiplexed quantitative reverse transcription-polymerase chain reaction to measure the copy number of six different mRNA transcripts in 324 individual cells. There was a trend toward higher transcript levels in cells isolated from old animals, but no significant increase in transcriptional heterogeneity with age was found in the surveyed populations. Flow cytometric analysis of membrane protein expression also indicated that cell-to-cell variability was unaffected by age. We conclude that large-scale regulatory destabilization is not a universal concomitant of aging, and may be of significance as an aging mechanism primarily in nonrenewing tissues.


Assuntos
Envelhecimento/genética , RNA Mensageiro/metabolismo , Transcrição Gênica , Animais , Senescência Celular/genética , Citometria de Fluxo , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...